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The effect of turbulence and magnetic field on electron 
density fluctuations in the ionosphere 
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Dungey (1956) has shown that the number densities of electrons and positive 
ions, under the action of turbulence and the magnetic field in the ionosphere, are 
closely equal-in other words the only fluctuations in electron density are those 
controlled electrostatically by the ions-and he has estimated the magnitude of 
the fluctuations. The present paper uses Dungey’s model and results, reduces his 
equations to a single equation for electron density, in each of several cases, and 
then investigates the possible spectra of fluctuations. It is concluded that, in 
the circumstances that commonly arise, the spectrum on this model should 
be nearly isotropic, though exceptionally there could be a strong elongation 
of irregularities at right angles to the magnetic field. Thus some other mech- 
anism is required to account for the elongation that is observed, parallel to the 
field. 

Below 110 km, where the magnetic effect on the ions’ motion is small, and at 
wave-numbers in the inertial subrange of the turbulence, dimensional argument 
shows that the spectrum function (integrated over all directions) is proportional 
partly to K-1 and partly to ~ - 8 .  Above 120 km the magnetic effect is large; a more 
detailed study shows that when turbulence is present, which probably is not 
often, the spectrum function in the inertial subrange is proportional to K*, 

with considerable anisotropy. 

1. Introduction 
Radio waves are scattered in the ionosphere by irregularities of electron density, 

which are believed to owe their form, in the E region at least, largely to atmo- 
spheric turbulence. Most theoretical studies of the irregularities’ formation have 
used a model in which the electrons and ions are subject only to convection by 
the turbulent motion, and (because electrostatic attraction keeps the number 
densities closely equal) to diffusion with one effective diffusivity which is about 
twice the kinematic viscosity. In  fact, since compressibility and recombination 
effects are generally agreed to be insignificant (Batchelor 1955, p. 10; Villars 
& Weisskopf 1955; Wheelon 1957), the model is simply that of turbulent convec- 
tion of heat, with Prandtl number of about 8. The quantity of greatest interest in 
scattering theory is the spectrum function of electron density; an account of the 
present state of knowledge about the spectrum function of a conserved scalar, 
subject only to  turbulent convection and to diffusion, can be found in Batchelor 
(1959). 
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But the suggestion of Booker (1956), that the elongated irregularities that are 
observed in some places can be explained by taking into account the earth’s 
magnetic field, makes it desirable to study the effect of turbulence on an ionized 
gas, in the presence of a magnetic field. A suitable model for this purpose has 
been put forward by Dungey (1956). 

Dungey considered a gas lightly ionized into electrons and NZ ions, in turbu- 
lent motion in a uniform magnetic field. He ignored the processes of formation 
and recombination of ions, and supposed all constituents of the gas to have the 
same temperature. He showed that for the eddy sizes that are of most interest (up 
to a few kilometres) the motion of the neutral gas is not appreciably influenced by 
the magnetic field and collisions with charged particles. Thus he could suppose 
this gas to have a known turbulent motion, and write equations of motion for 
the charged particles regarded as gaseous constituents, taking into account their 
collisions with neutral molecules but not with one another. 

For these equations, giving the parameters typical values for the ionosphere, 
Dungey obtained the results that the inertia terms can be omitted, that electro- 
magnetic effects (other than the magnetic force on charged particles) are negli- 
gible for eddy sizes up to several kilometres, and that the number densities of 
electrons and ions are everywhere equal, to a very good approximation, although 
their velocities are not necessarily equal. (These results can also be confirmed by 
a linearized calculation, in which a single Fourier component C ei(K*x+wf) is used 
for the neutral gas velocity, so that the number densities are found by solving a 
set of algebraic equations.) 

So we have to reject one of Booker’s ideas: that it would be possible to have 
irregularities of electron density controlled by the magnetic field and collisions 
between electrons and neutral molecules, co-existing with those controlled 
electrostatically by the ions. This would violate the result that the number 
densities of electrons and ions are everywhere equal. 

The present paper starts with the same model as Dungey’s, and makes use of 
these results of his to study in more detail the irregularities of electron density 
(and it takes into account diffusion due to electron and ion partial pressures, 
which he neglected). Recent results that the principal ion present at  most 
heights is NO’ instead of N$ will not appreciably affect the conclusions. 

We can describe some of the effects of the magnetic field in simple physical 
terms. The motion of charged particles across the field tends to be reduced, and 
changed in direction. Thus irregularities of number density do not move with 
the air. Further, irregularities can be produced even when the air is uniformly 
ionized at first, and the motion involves no appreciable fluctuations in air density. 
There are two mechanisms which produce this effect, the first being that de- 
scribed by Dungey (1956) : 

(a )  If the air has a motion involving compression along the magnetic field, 
and expansion perpendicular to it, then, because the charged particles have 
their motion perpendicular to the field inhibited to some extent, they suffer 
a net compression (or, in the converse case, an expansion). 

(b )  If the air has a rotational motion, with a component of vorticity in the 
direction of the magnetic field, the charged particles tend to spiral outwards or 
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inwards, depending on the charge and the direction of rotation. Because the air 
exerts a greater drag on ions than on electrons, the motion of the ions dominates 
and a net compression or expansion results. (But this mechanism does not 
operate when the motion is two-dimensional in planes perpendicular to the field, 
because opposing electrostatic fields are then set up.) 

In  addition to these magnetic effects, there will be the ordinary turbulent 
mixing of ionization gradients giving rise to irregularities. All of these mechan- 
isms are correlated over roughly the same distance in all directions, and will not 
of themselves produce irregularities strongly elongated along the magnetic field. 
The only possible effect of this kind would arise if the ions had a large-scale drift 
relative to the air, and hence to the eddies. For irregularities of ion density pro- 
duced by eddies moving through the ionization will tend to have the form of 
wakes behind the eddies, and so to be elongated in the direction of the drift. 
Such a large-scale drift cannot have a strong component parallel to the magnetic 
field, because there is no force which could maintain it (an electrostatic field 
would be mostly neutralized because electrons are conducted much better than 
ions along the magnetic field), and hence a strong elongation of irregularities of 
this type must be at right angles to the magnetic field. This is referred to again at 
various points in the paper. 

2. Notation, and equations of motion 

u(x, t )  = gas velocity, supposed known, 
E(x, t )  = electrostatic field, 
B = magnetic induction, 
T = absolute temperature, 
k = Boltzmann's constant, 
e = electronic charge. 

For the charged particles we use the following symbols, with suffixes + and - 
where appropriate: 

m* = mass, 
Q* = eB/m,  = gyrofrequency, 

f i  

Y 

We use the following notation: 

= collision frequency with molecules (defined in terms of momentum 

= BkT(m+f+ + m-f-)-' = coefficient of ambipolar diffusion-see (vi) 
transfer-see (iii) below), 

below, 

u*(x, t )  = velocity, 
n,(x, t )  = number density, 
p*(x ,  t )  = kTn, = partial pressure. 

In  the specification of the last three quantities, electrons and ions are regarded 
as two gaseous constituents of the atmosphere. 

For the spectra of number density we use the notation of Batchelor (1959): 
I'(K), the spectrum function, is the density of contributions to 2 on the wave- 

hi = Wf*, 

36-2 
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number magnitude axis (the overbar denotes average over all realizations), and 
A(K) is the density of contributions to  2 in wave-number space. (Strictly these 
should be contributions to (n - no)2, since we do not include a &function at zero 
wave-number to take account of the mean value no.) 

We make some simplifications, of which the first five are taken from Dungey 
(1956). 

(i) Electromagnetic effects are negligible; thus B is constant, and E = - V$.  
(ii) The inertia of the charged particles is negligible. 
(iii) The effects of collisions with neutral molecules are included as a drag 

term in each equation of motion: m+f+(u-u+) per ion, and m-f-(u-u-) per 
electron. These can be taken as defhing f,, since if the ordinary collision fre- 
quencies were used we should expect a factor of Q in the expression for the drag 
on ions. Collisions between electrons and ions are ignored. 

(iv) The motion of the neutral gas is incompressible: div u = 0. 
(v) The number densities of electrons and ions are everywhere equal: n(x,  t ) .  

(This is a good approximation because in the region of interest In+ - n-1 is small 
compared with the magnitude of fluctuations in n, as can be checked using Dun- 
gey’s results. But we cannot infer that div E = 0; E is determined by the equa- 
tions of motion, together with the fact that it  is derived from a potential.) The 
mean value of n over the region of interest is called no. 

(vi) The temperature T is the same for all constituents of the gas, and con- 
stant in time and space. Hence the partial pressures of electrons and ions are the 
same: p(x,  t ) .  The terms in Vp in the equations represent diffusion of charged 
particles; the effective diffusivity is y = 3kT(m+f+ + m-f-)-l, which is about 
twice the kinematic viscosity, in practice. 

We take for the gyrofrequencies of electrons and N,f ions the values 

0- = 7 x 106sec-l, 0+ = 140sec-l. 

The collision frequencies vary greatly with height, and figure 1 shows graphs of 
the ratios A, = QJf, against height. In  those calculations, collision frequencies 
for electrons were taken from Nicolet (1959); they were multiplied by 
8 x 442 x (m-/m+)* to obtain those for ions, where the factor 4 takes account of 
our definition in terms of drag. Thus the ratio h+/h- is constant at 0.00156. 

The equations of motion are 

m+f+(u+ - U) = - eVq5 + u+ A eB - n-lVp, 

m-f-(u- - u) = eVq5 - u- A eB - n-lvp, 

and 

which implies V .  (nu+ - nu-) = 0. 

Now p = kTn = Q(m+ f+ + m- f-) yn, and we obtain some simplification by 
introducing a function g(x, t )  such that 
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With b as the unit vector in the direction of By the first two equations become 

nu+ - A, nu+ A b = nu - yVn - A+ nVg, 

nu- + A- nu- A b = nu - yVn + A- nVg. 

These can be solved for the velocities u*, in terms of u, n, g :  

an 
axi + axj 

an 

nu,+ = Sti+ nui - y- - A  n - , 

nu,- = s,- nui - y + A-n 3) , 
( 
( axi 

FIGURE 1. Variation 

where 

of the ratios A, = with height. 

1 A, 0 1 -A- 0 

0 0 l + A ?  0 l + A %  

and the 3-axis is in the direction of B. 
Substitution into the last of (1) gives an equation for g in terms of n and u 

this must be combined with the equation for n obtained from the third of (1) 

an -+Sii+(- a (nui-”..$) -y&j = 0. 
at ax, (3) 
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3. Small magnetic effect on ions’ motion 
When A+ < 1, which holds below about llOkm (see figure 1))  the magnetic 

effect is small for the ions’ motion but not necessarily for the electrons’ motion. 
Irregularities of number density have a motion which is nearly that of the ions, 
attracted only a little towards that of the electrons. Hence the distortion and 
rotation suffered by existing irregularities is such as to destroy rapidly any 
tendency to a preferred orientation. If the mechanism of production itself led 
to a strong elongation in one direction, this feature would show in the resulting 
spectrum, but, as mentioned in the introduction, none of the mechanisms 
(magnetic effects and mixing of a gradient) available on the present model can 
do this. The spectrum of number density must therefore be nearly isotropic in 
wave-number space. 

Further, only small fractional fluctuations in number density can be produced 
by the magnetic effects. (More detailed arguments for this are given by Dungey 
1956, and in 94.) And fluctuations produced by the mixing ofa gradient must also 
be small, unless the mean number density changes by an appreciable fraction 
over the length scale of the large eddies. Observations of radio scattering in the 
E region show that the fluctuations there are small, except in aurorae and in 
meteor trails, where it is evident that mechanisms other than those considered 
here are operating. So in the more detailed work on the case A+ < 1 we shall sup- 
pose that the fractional fluctuations in n are small. 

u+ = u - yn-lVn + v, 
where v(x, t )  is a random velocity field. The energy spectrum function of v is small 
compared with that of u, except possibly at  large wave-numbers, near the spec- 
tral cut-off. The equation for n is 

We write 

an 
at -++u.Vn+V.(nv) = yV2n, (4) 

and the entire magnetic effect is represented by V . ( n v ) .  From equations ( 2 )  

In  order to calculate g, and hence V . (nv), we wish to neglect products of gradi- 
ents of g and gradients of n in equation (6)) so as to use the first or second approxi- 
mation in an iteration process as the solution for g. For a finite region of irregu- 
larities, this will be justified if the fluctuations in n are sufficiently small. Reasons 
have been given for supposing that they are small; we now have to make the 
hypothesis that they are small enough for the approximation to be valid. But 
it can at least be said that if the term in g on the right-hand side of (6) were im- 
portant, 16 would tend to indicate the presence of strong electric fields, and hence 
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of large drift velocities. Drift velocities larger than the wind velocities have been 
observed in the aurorae (Booker 1956), where in any case the approximation 
breaks down because the fractional fluctuations in n are of order unity, but not 
elsewhere in the E region. Further comments on this point will be made after 
the approximate solution has been obtained. 

In  the two limiting cases, A- < 1 and A_ % 1 B A,, we can use a different 
approximation procedure, expanding in powers of A- and of A+/&, respectively. 
The requirement of small fluctuations in n is no longer necessary, but it is not 
any easier to see what condition should be imposed. However, in the limiting 
cases to which they apply, the equations obtained give the same results as 
those obtained by the more general approximation. Provided there is no 
significant large-scale drift of irregularities relative to the air, the equations are 

A large-scale drift could be included by adding the drift velocity to u in the term 
u . Vn. 

For the more general treatment, we write the equations in terms of Fourier 
transforms (following Dougherty 1960). N ( K ,  t ) ,  U(K, t )  and G(K, t )  are used for 
the Fourier transforms of (n - no), u, and g, Any large-scale gradient of n can be 
considered as a low-wave-number component, and so included in N ( K ,  t ) .  

We write p.. = X.. -Xij-, Q z j  = A+S,+ +A_#,,-, 
23 w+ 

&..-L..(B) = (A-Sk,-Sij+ + A+'tcl+'ij--) ~ k ~ l  
23 a2 

Qmn KmKn 
, 

where K, = K cos 8. The last two matrices are functions of the angle 8 between K 

and B, but not of the magnitude of K. Equation (6) becomes 

- Q j k K j j K h  G(K') N ( K  - K') dK', ( 8 )  

where the time-dependence has not been shown explicitly. We approximate as 
suggested, solving (8) for G by iteration and omitting terms of 2nd and higher 
degree in N .  Substitution into the Fourier transforms of (4) and ( 5 )  gives 

a N ( K )  at - t k k / { u k ( K ' ) -  K(8, Kf)}N(K-K')dK'-iKjLjk(8)120Uk(K) 

= - Y ( K ~  - Ljk(B)~, K ~ }  N(K), (9) 

where Wk(O, K') = Lkl(8) V(K') + ( Q i j ~ : ~ i ) - l  Mkl (8 )~;Pmn K; Un(~'). 
The term L i k ( S ) ~ j ~ k ? / N ( ~ ) ,  representing an effect of the magnetic field on 

diffusion, can be omitted. When A, < 1, K - ~ L , ~  K, K~ is small except for a small 
range of angles 8, about 90", in which it may be of order unity. And its average 
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value over all directions is small, so that we are justified in neglecting it entirely, 
considering the rapid rotation and distortion of irregularities. (It may be noted 
that the effect of this term tends to elongate irregularities along the magnetic 
field, but that it cannot achieve this to a significant extent in the presence of 
turbulence, unless there is a mechanism for producing irregularities on a scale 
small compared with the smallest eddies. And in the present model there is no 
such mechanism.) 

The term iqLjk(#) no U k ( ~ )  represents the production of ffuctuatioas in 7c. 

Some production is also represented by the term in w k ,  but this can be shown to 
be relatively small. 

The drift velocity W,(~,K’) of irregularities relative to the air represents a 
further interaction, due to the magnetic effects, between Fourier components of 
velocity and number density. Fuller treatment of these drifts has been carried out 
by Dougherty (1960), but if we average this velocity over all angles 8, the result 
is of the order of A, times the magnitude of U(K’), and so its direct distorting 
effect should be unimportant, when A, 4 1. 

It is possible, however, that the drift velocity associated with large-scale 
motions could be greater than the air velocity on much smaller scales, and thus 
there could be an indirect effect due to the motion of irregularities relative to the 
eddies which are acting on them. The result would be roughly a decrease in the 
effective time constant of the smaller eddies. The influence that this might have 
on the spectrum of number density is discussed in the next section. For it to 
happen, the large-scale velocities must be more than A 7 l  times the velocities 
characteristic of the smallest eddies. 

External electrostatic fields are not included here, although it is known that 
such fields are present in the E region, generated by winds blowing horizontally 
across the magnetic field. These winds can be represented as Fourier components 
with wave-numbers directed vertically and small in magnitude, and it appears 
that the electrostatic fields are accounted for by equation (9) if we include such 
components in U(K, t ) .  

We conclude this section with a comment on the approximation by which the 
equations were linearized in N(K). The principal effect of the magnetic field is the 
production of fluctuations, and the integralinvolving W, is really a second approxi- 
mation to the leading term i ~ ~ L ~ ~ ( 6 )  n0Uk(x). Shce the integral can be shown to 
be small compared with the leading term, there is thus some confirmation of the 
validity of the approximation, irrespective of the size of the region. 

4. Spectrum of electron density when the magnetic effect is small 
Let us now see if the idea of a universal equilibrium, which has been applied 

to the spectra of turbulent energy and of a convected scalar, can be used to obtain 
some results about the spectrum of electron density at  large wave-numbers, under 
the conditions assumed in the preceding section. Certainly, if a statistical equili- 
brium exists for that part of the velocity field with length scales less than a certain 
value, it  should also exist for the same part of the field of number density. But 
it is not true that the second equilibrium is determined simply by the supply of 
contributions to 2 at small wave-numbers and their destruction at, the same rate 
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by diffusion at large wave-numbers, for the dependence of the term V .  (nv) on 
velocity derivatives means that an important part of the supply occurs in the 
equilibrium range itself. 

At first we shall suppose that there is no significant large-scale drift of irregu- 
larities relative to the air, so that the reduction of the eddies’ effective time con- 
stant, referred to at the end of last section, does not occur. Thus the only effect 
of the magnetic field is the production of the irregularities. Now we consider the 
parameters on which the equilibrium depends. 

The term in (9) that represents the drift can be neglected (together with the 
magnetic effect on diffusion), and the equation becomes 

The parameters 8 (energy dissipation) and v (kinematic viscosity) determine the 
turbulent energy equilibrium; in addition we need the diffusivity, y ,  a rate of 
supply of contributions to 2 from the small wave-numbers, x, and one or more 
parameters specifying the production in the equilibrium range. 

Now two types of irregularity can be distinguished: those due to  the mixing of 
a gradient of ionization density, and those produced in the first place by magnetic 
effects; it can be seen that these types are not correlated (on the supposition of 
small fractional fluctuation in n), although they are subject to the same convec- 
tion and diffusion processes once they are formed. And the convection is practi- 
cally independent of the magnetic field. Thus the spectrum of number density 
fluctuations is the sum of two parts, of which one depends on the gradient of mean 
number density, but not on the magnetic field, and the other depends on the 
rate of production of contributions to 2 by the magnetic effect, but not on the 
gradient. In the equilibrium range the first part is proportional to x, and the 
second part to this rate of production, because of the linearity of equation (10). 

If we seek merely the spectrum function l ? ( K ) ,  which gives the density of con- 
tributions to 2 on the wave-number magnitude axis, then it can be seen from the 
isotropy of the equilibrium part of the velocity field that only the rate of produc- 
tion of 2 per unit interval of wave-number magnitude is needed. And since the 
U(K) at different wave-numbers are uncorrelated, this rate of production at a 
given wave-number magnitude should be proportional, in its dependence on the 
magnetic effect, to the integral of [noKjLjk(B) Uk(~)12 over all directions, that is to 

277nE K~ rcr Q k r n ( ~ )  Ljk(0) Lfm(B) sin 8dB L 
= t n l~ -~E(~) sO~~lcr (~~~KZ-K1K, )L , ,L l , s inBdB 

I d B  (A- sin4@ - (1 +A:) (1 -t A t )  (1 + A,h_cos28)2sin26’ 
(( 1 +A$) (1 +A?) cos20 + (1 + h,h) sin28)2 

x Jon sin30 [I + 
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7, which is defined by (1 l), depends principally on height above ground (figure 2), 
but also to some extent on latitude and atmospheric conditions. ( D k m ( ~ ) ,  E(K) are 
the kinetic energy spectrum tensor and function, respectively, in the usual nota- 
tion, and the relation between them is a consequence of isotropy (Batchelor 1953, 
$3.4). The factor of proportionality between the rate of production and (11) de- 
pends only on 6, K ,  v and y, and so does the factor E ( K ) .  These can therefore be 
omitted, and we obtain the single additional parameter which occurs 
linearly in the expression for I'. 

,I- 10-5 

FIGURE 2.  Variation of q with height. 

Thus, in the equilibrium range, 

r ( K )  = X f I ( 4  6 ,  b', Y) + (norl)2f2(K, € 7  v, y) ,  

and the first term is the same as the spectrum function of a conserved scalar 
subject to convection and diffusion. 

Precise expressions for fi and f 2  can be given if there exists a range of wave- 
numbers, corresponding to an inertial subrange in the kinetic energy spectrum, in 
which r ( K )  is independent of v and y. Dimensional argument then shows that 
fl cc 6 - 4 ~ 4 ,  the usual form, and that f 2  cc K - ~ .  Making use of the fact that y w 2v, 
we have 

r ( K )  = Clx~- ) i~ -9+C, (n0r )2~-1 ,  in 1-1 < K < e+s, 

where I is a length-scale of the energy-containing eddies, provided there are values 
of K satisfying the two inequalities. 

Beyond the cut-off, the spectrum would be expected to fall off in much the same 
way as the kinetic energy spectrum, owing to the combined effects of viscosity 
and diffusivity. 

The three-dimensional spectrum function A(K), which gives the density of 
contributions to 2 in wave-number space, is also a sum of two terms, proportional 
to x and (nor)2, respectively. The first should be isotropic in the equilibrium 
range, but the second will not be strictly isotropic, its form depending on the 
variation of Ljk with 8. Dimensional argument is of no use, but it is possible 
to estimate the &dependence by a calculation which assumes a simplified 

(12) 
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mechanism of transfer, replacing the effect of the smaller eddies by an eddy dif- 
fusivity, and that of the larger eddies by a uniform shearing and rotating action. 
we find that A(K) = ( 4 7 r ~ 2 ) - ~ ( C ~ ~ ~ - 3 ~ - 5  + (nop)2K-lj(0)}, 

wherej(0) satisfies a certain integral equation. It has been evaluated in the two 
limiting cases A- 1 and A- $ 1 $ A,, for the simplified equations (7), and in 
each case i t  does not depart from its mean value C, by more than 10 yo. Hence 
the departure from isotropy is not important, and presumably the same is true 
when A- is of order unity. The same calculation gives a value of 3.1 for C,. 

The quantity x would be expected to depend principally on the gradient of 
mean number density. If we assume a gradient d?i/dh, r.m.s. turbulent velocity 
u (uz = is), and a length scale Z for the large eddies, the best estimate of x is 
(dE/dh)zuZ. But to check the completeness of expression (12) we may add to x 
a contribution from the magnetic effect on the large eddies: of order (noq)2u/Z. 
Then estimating e as u3/Z, we have 

and since ~1 is large the second term is negligible compared with the third. So 
may be taken to be completely independent of the magnetic effects. 
As for the relative importance of the two principal terms, the ratio of the term 

depending on the gradient to that depending on the magnetic effect is (omitting 
a factor of order unity) 

The first factor is small, as we have supposed a uniform gradient extending a 
distance many times Z. The last factor is also small, but the second factor is large. 
The variation of p with height is shown in figure 2. So it seems possible that the 
part of the spectrum due to the magnetic effect may be dominant at  the larger 
wave-numbers above (say) 90 km. 

The total contribution to 2 from magnetic effects is approximately 
C2(noT)210g (Zdv-a), and in practice the log factor should not exceed 7. Thus the 
fractionalfluctuation arisingfrom this cause is small below 110 km (where A, < 1). 

So far in this section we have ignored the possibility of significant drift velo- 
cities of irregularities relative to the air, which would cause the eddies’ effective 
time constant to be decreased. If such drifts exist, the r.m.s. velocity w relative 
to the air must be included in the parameters determining the statistical equili- 
brium for irregularities of number density, and the problem cannot be solved by 
dimensional argument alone, even in the inertial subrange. 

It can be argued, however, that if w is large compared with the turbulent 
velocities associated with larger wave-numbers, then only a single combination 
of E and w will occur in the expression for the spectrum at these wave-numbers. 
For the effective time constant is then simply ( W K ) - ~ .  The production of irregu- 
larities, the process of eddy diffusivity, and the straining and rotating action of 
the large eddies, can all be calculated, in a rather idealized way, so that only the 
products of mean square velocity or vorticity with the effective time constant 
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are involved. The expressions & K ~ ( W K ) - ~  and &K*(WK)-~, which are obtained 
below the viscous cut-off, involve 8 and w only in the combination (e22r3), which 
is of dimensions J ~ T - ~ .  

Dimensional arguments give 

r ( K )  = c 3 ~ € - ~ w ~ - 4 + C , ( n , r ) 2 ~ - f ,  

in any range of wave-numbers where the above argument holds, and where 
molecular diffusivity is not important. But this is not the same as the inertial sub- 
range, for molecular diffusivity now becomes comparable with eddy diffusivity 
(e%w-1~-9) at a wave-number below the viscous cut-off, and the point where w 
is comparable with the eddy velocities may also occur in the equilibrium range. 
Further, the calculations mentioned show that the anistropy is increased, with 
irregularities becoming elongated, not parallel to  the magnetic field but at right 
angles to  it. 

There appears to be no observational evidence for such anisotropy. Perhaps 
below llOkm w does not take large enough values to  have a serious effect, 
especially as the Reynolds numbers of turbulence may not be very large. So it 
is not worth while to study the complexities of the situation any further here. 
But the same type of anisotropy is predicted in the case which occurs above 
120 km. and in 0 5 ( b  and c )  it  is described more fully. 

5. Large magnetic effect on the ions’ motion 
When A, B 1, say above 120km, both electrons and ions are practically 

stopped from moving acrosa the magnetic lines of force. (We ignore large-scale 
electric fields, since their only effect on the number density spectrum is the same 
as that of large-scale winds.) One result is that eddies move relative to the 
ionization at velocities at least comparable with those of the turbulence, and 
hence the reduction of effective time-constant, which was mentioned in $$ 3 and 4 
as a possibility below llOkm, must occur at these greater heights, and will 
certainly be important if the Reynolds number of turbulence is reasonably high. 

We expect the irregularities to behave as if they were simply convected along 
lines of force. And since the tendency of the magnetic field to separate electrons 
and ions is not great, there is no need for strong electric fields to restrain this 
tendency, and so the motion of irregularities along the lines of force should be 
close to the component of the air velocity in that direction. This is all confirmed 
by a calculation using an iteration process as in $3  (but expanding in inverse 
powers of A+). Here the Fourier transform is not needed, and the leading terms 
in the equation for n are 

Because the three processes of production, distortion, and destruction of 
irregularities are described by this equation, the second-approximation terms 
should not be significant, unless the gradients of n perpendicular to the magnetic 
field are A+l times those parallel to it. If such a highly anisotropic distribution 
should occur, the second approximation terms would tend to limit the degree of 
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anisotropy; hence it is legitimate to neglect those terms provided that we check 
afterwards that solutions of (13) are not strongly anisotropic in this way. 

As Dungey (1956) stated, the magnetic effect must now give rise to large 
fluctuations in n, since the divergence of the large-scale part of the ions’ velocity, 
multiplied by the time constant of the corresponding eddies, is of order unity. 
But this is not so if there is a steady wind, much stronger than the turbulent 
winds, since the effective time constant is then greatly reduced. In  any case, 
however, the fluctuations produced by mixing of a gradient should always be 
insignificant. 

(a)  Growth of irregularities in the absence of diffusion 
We omit the diffusion term, and do not show explicitly dependence on (xl, xz). 
Then n(x3, t )  satisfies 

d n  an an au 
- -+a, - = -m-3 

at ,ax3 ax3 9 

_ -  (14) 

and 

The characteristics of this equation are the solutions x3(t) of 

n (x,, 0) = no. 

!5 = u,(x,,t). 
at 

Writing q = log (nln,), we find 
- dq = -_ au3 

dt ax, 

and q(x,, t )  = -lof% (xi, t‘) dt’, 
8x3 

where the integration is along a characteristic. 
Now the statistical properties of a variable such as au3/i3x;, on a characteristic 

through a fixed point (z,,t), depend on the interval (t-t’). In particular, the 
average value of au3/i3x; has the same sign as (t  - t’), and vanishes when t’ = t. 
But it can be reasonably claimed that as this interval becomes large the statistical 
properties tend to a constant form. Thus by the same plausible extension of the 
Central Limit Theorem as is used in showing that, for example, salt concentration 
in a turbulent liquid flowing along a pipe acquires a normal distribution, it follows 
that the value of q at a fixed point (x3, t )  should have a probability distribution 
which tends t o  the normal form as t becomes large. 

Let us first suppose that the probability distribution is exactly normal. Then 

and the fact that the mean of n is always no, so that 

leads to the relation 
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We also find that 

= niexpc2. 

Then c 2  can be calculated as follows, making use of the fact that the averages of 
au3/ax3, a(pu3)/ax3, evaluated at a fixed point (x3, t) are zero. 

au 
0 2x3 ax3 

= s'3 (x3, t )  4 (xj, t ' )  dt', 

where (xj, t') lies on the characteristic through (x3, t ) .  As t -+ co, do2/dt approaches 
a constant value 

6 = 2 j i  -m "(x3,t)%(xj,t')dt', ax3 8x3 (16) 

and u2 = [t+O(l),  (17) 

provided the necessary convergence holds. Then, from (15), 

dn2 - 
- - <n2 as t+m. 
at 

But the Central Limit Theorem does not ensure sufficiently uniform conver- 
gence of p(q ,  t )  to the normal form to justify the use of the normal distribution in 
evaluating ?i and 2 (because of the strong weighting factors eq and e2qin the inte- 
grals). It seems clear that equation (18) must be correct in form, but that the 
value (16) for [ will be accurate only in special cases, one of which would be if the 
values of au3/ax3 on a characteristic had a joint normal probability distribution. 
In  general, the accurate value of 5 must be obtained from the ratio of 

to 

Consideration of the integral in these expressions as the sum of a number of 
weakly dependent random variables makes it intuitively clear that the ratio 
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tends to a finite limit as t + co, and that this limit should be practically achieved 
when t is not much greater than the correlation time of au3/ax3 on the charac- 
teristic. Now if at such a value o f t  the integral is small, then the exponential 
can be expanded in series, and the first-order approximation to c is found to be 
given by (16). At first sight it may seem that this case could not arise, since the 
correlation time should be approximately the reciprocal of the r.m.s. value of 
au3/ax3. But in the problem we are concerned with, the correlation time is 
considerably shortened because of the convection of eddies relative to the ioniza- 
tion (especially the convection of small eddies by large-scale air motions), so that 
(16) is a good approximation, and all the results which were obtained for the 
distribution of q should be reasonably accurate. 

Another result, which is more straightforward, involves the integral of n with 
respect to x,. Let Z(x3, t )  be the position a t  t = 0 of the characteristic through 
(x3, t ) ,  so that 

Now 

az 
Oax; 

n = n  - 

Z(x3, t )  - x3 = - u,(xj, t’) at’, Sd 
and a standard argument shows that, as t + co, 

a -  f 
- (2 - x3)2 + 2 
at u3(x3, t )  U3(Xk, t’) at 

= p. 

When there is a sufficiently strong uniform wind, we can calculate 6 and p as if 
a static distribution of velocity were convected by a velocity V a t  right angles 
to the lines of force. A motion parallel to the lines of force carries the irregularities 
as well as the eddies with it, and so is not relevant. The results are, for isotropic 
turbulence, 

- 

where Lp is the longitudinal integral scale, and u 2  = +u2. 
When the only velocities are those of the turbulence, the effect on the smaller 

eddies is the same, since the bulk of the kinetic energy is contained in large eddies, 
except that the convecting velocity takes random values. We average the expres- 
sions for p and c over all such values, assuming a normal distribution of velocity 
at a point, and find that V is to be replaced by u J(2/7~) .  Of course it cannot be 
expected that an accurate estimate of p will be obtained in this case, but the esti- 
mate of y may still be good, since 5 depends to a greater extent on the smaller 
eddies. 
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( b )  Spectrum at large wave-numbers for small diffusivity 
Next, we consider the behaviour of a fluctuation which is initially a single Fourier 
component, of wave-number K~~ large compared with the cut-off wave-number 
of the turbulence, at first in the absence of diffusion. After some time, the fluctua- 
tion will be nearly sinusoidal but with a wave-number K~ which vanes slowly in 
space. The variation of K~ along a characteristic of equation (14) is given by 

where (a,  b, c )  = (au3/ax1, au3/ax2, au3/ax3), evaluated on the characteristic. Now 
since n satisfies the same equation as K ~ ,  the amplitude of the fluctuation is every- 
where proportional to K ~ ,  and log (K3/Ko3) ,  has the same probability distribution 
as has been found for q = log (%/no) in (a). The density on the K3-axis of con- 
tributions to 2 from this fluctuation is obtained by weighting this probability 
distribution with the square of the amplitude, and transforming from a base of q 
to one of K~ = ~,,~expq. It is 

Using the result (17), cr2 = [t + 0(1), we find that, at large times, Y satisfies the 
equation 

(23) 
ayP a 2 y  
- = 4CK37,  
at ak-3 

and this will hold in general, whatever the initial form of Y. 
It does not appear possible to obtain a differential equation for A(K)  by a con- 

tinuation of this argument. But the fact that Y satisfies this equation of the 
diffusion type makes it reasonable to seek to generalize it for A(K).  We can do this 
by regarding K as a sum of random, weakly dependent terms, each small compared 
with K ,  and without correlation between the 1 ,2  and 3 components, by symmetry. 
Then, making use of (23), we obtain the equation, 

By analogy with the expression for 5, should be given by 
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A small diffusivity will not influence the mechanism of transfer of 2 that is 
involved here, and we can include it by subtracting 2 y ~ i A  from the right-hand 
side of (24). The condition for equilibrium is then 

of which the appropriate solution is 

The surfaces of constant A are the ellipsoids 

6 
5 

K; + K: + - K: = constant, 

so that no pronounced anisotropy is obtained beyond the viscous cut-off, if the 
diffusivity is small, because will not differ greatly from 6. This could have been 
inferred from equations (22), which show that the rates at which contributions 
to 2 spread out in different directions are about the same. 

But this depends on the presence of axial symmetry about the magnetic lines 
of force. If there is a sufficiently strong uniform wind for 6 and to be calcu- 
lated as in (a) ,  as if a static velocity distribution is carried past the lines of force, 
it  is not consistent to assume such symmetry. Taking the uniform velocity V 
along the 2-axis, we find that the derivatives with respect to K~ and K~ in (24) have 
different coefficients, gl and c2, of which Cl = 35, while Q is zero. Thus the spec- 
trum can spread out at  right angles to the convecting velocity but not parallel to 
it. And it follows that irregularities are elongated in some direction at right 
angles to the magnetic field. 

(c) General form of spectrum 

When it comes to the general question of the transfer of n'i in u-space, the rates 
of strain are not the only determining factors; the interaction of Fourier com- 
ponents of velocity and number density must be considered. Further, these 
interactions do not occur in isolation; their effectiveness in transferring 2 
depends on all the velocity components, and on molecular diffusion. But we have 
here a rather special case, since, at least for small diffusivity, and for wave- 
numbers corresponding to the equilibrium range, the smallest time-constant 
relevant to a given velocity component is in general that determined by the 
sweeping action of the large-scale motion, rather than by diffusion, or some eddy 
diffusivity, or an inherent time constant of the turbulence. Hence we may with 
some reason suppose that the transfer of 2 is determined essentially by the two 
interacting Fourier components, since this time constant depends entirely on one 
of them. 

Further, the action of a single velocity Fourier component K', being convected 
at a fixed speed, on a number density Fourier component K may be easily calcu- 
lated. The resulting wave-numbers are K + m ~ ' ,  where m = f 1, k 2, etc., and an 
approximate Fourier analysis, valid when the convecting velocity is much larger 
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than the amplitude of the velocity Fourier component, may be obtained. So 
we assume a sufficiently strong convecting velocity, in the %direction, for this 
to be valid for all significant Fourier components. To determine the transfer of 
2, an effective time constant is needed, but this can be obtained if we require 
that equation (18) shall be satisfied, with the expression (16) for 5. Calculating in 
this way, and including the effect of diffusion as before, we find 

where K(K) = 27rV-16(~2) <D,,(K), and the integration is over A-space. The 
&function, which actually has a finite width depending on the length scales and 
the ratio of V to the turbulent velocities, implies that the spectrum is confined 
close to the plane K~ = 0, so that the irregularities are strongly elongated in the 
2-direction. Physically the elongation could be described as a streakiness in 
the ionization, left behind as the eddies are carried through it. 

We can apply some checks to the equation when y = 0. If K is large we obtain 
equation (24) without the K,-derivative, in accordance with the remarks a t  the 
end of 95(b).  The equation was formed in such a way that equation (18) could 
be obtained from it by integration over all K, but we can also divide by K; and 
integrate. Making use of (19) and (21) we find 

n2-((Z-z , )2  d = - / - A ( K ) ~ K  d 1  = % ; ~ K ( K ) ~ K  
O at dt K i  

= nip, 
in agreement with (20). 

of A, K ,  respectively. X ( r )  is the correlation function of (n-no), and 
We take the Fourier transform of (25) and write S(r), T ( r )  for the transforms 

ni T(r)  S(r) = ~ 

T(O) - T(r)  + 27' 
Then at equilibrium 

Now T(0)  = u2Lp V-l and, in the inertial subrange of the turbulence, 

T(O)  - T(r)  oc 6% V-l(r: + YE)--+ (8rf + 3ri), 

and, provided y is not too large, 

A(K) oc n;u2 Lp6-%~-h3(~2)  (1 - 0.097 cos 20 + . . .), 
where B is the angle between K and the 3-axis (magnetic field). 

When there is no steady wind, the turbulent velocities will produce much the 
same result, but the effective convecting velocity will take all directions in the 
plane at right angles to the magnetic field. It may then be reasonable to use the 
spectrum just obtained, broaden the &function to a width of about L;l, rotate 
the whole distribution about the 3-axis, and take the average. We still obtain a 
strongly anisotropic spectrum, with a rate of decrease of K-* along the 3-axis and 
K-* in other directions. 



Electron density Jluctuations in the ionosphere 563 

The function r ( K )  actually increases in the inertial subrange, like KQ. 

Once again, the situation is very coniplex. It can a t  least be claimed that the 
neglect of second-approximation terms in (13) is justified by the conclusion that 
no marked elongation of irregularities in the direction of the magnetic field 
occurs. For although the calculations given are rather tentative, they do make it 
clear that the action of the turbulence, even with the constraint of the magnetic 
field, does not increase the components K~ (parallel to the field) of the wave- 
numbers of fluctuations much less rapidly than the other components. 

6. Conclusion 
The point that emerges most strongly is that atmospheric turbulence, in the 

presence of the earth’s magnetic field, cannot account for the sort of anisotropy 
which is observed experimentally (though i t  need not prevent its formation). 
The theory shows that irregularities of electron density which are produced by 
this means could possibly be strongly elongated in directions at right angles to 
the field, but never parallel to it, whereas in all observations, when strong 
anisotropy occurs it takes the form of elongation along the field. So it  appears that 
the circumstances in which the theoretically predicted sort of anisotropy can 
occur are not often present, and it is necessary to find some other explanation for 
the anisotropy that is observed-for example, trails of ionization behind charged 
particles entering the atmosphere along lines of force. 

The spectral forms which are given by the theory do not seem to be much help, 
either, in the interpretation of experimental results. Below 110 km it is predicted 
that a term proportional to K - ~  should be added to the usual term in K-*, in the 
‘ convection subrange ’ of the spectrum function l?(K), whereas observations 
mostly indicate a function with a higher power law, K - ~  to K - ~ .  There is consider- 
able evidence pointing to the presence of turbulence at th.ese heights, and, 
provided the Reynolds number is high enough, the prediction should be correct 
over some range of wave-numbers. It may be, of course, that the observations 
refer to a part of the spectrum about or beyond the cut-off. 

Above 120 km the predicted form is of a rather unusual type, which is not 
altogether surprising in view of the constraints imposed on the particles’ 
motion. It is probable that at  these heights turbulence exists only occasionally, 
and that when it does the Reynolds number is not high, so that this type of 
spectrum is not of immediate practical interest. 

Another matter that remains uncertain is the validity of the approximate 
solution given in 9 3 for the electric field, and the possibility tha t  in some circum- 
stances the correct solution could be much larger. This is especially so in the 
aurora, where large fractional fluctuations of number density occur, together 
with strong electric fields. But this would not be likely to lead to an explanation 
of the elongated irregularities there-the argument against their being produced 
by turbulence is valid even if the detailed calculation in $5 3 and 4 is not correct. 

I should like to thank Mr John Dougherty for several helpful discussions, and 
for letting me see his own work on a related subject. A brief preliminary account 
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of this work is contained in the December 1959 issue of the Journal of 
Geophysical Research, as part of the proceedings of a Symposium on Fluid 
Mechanics in the Ionosphere held at Cornell University in July 1959. The 
height above which the magnetic effect is large, there given as 140 km, has 
been reduced to 120km here by the use of lower values for the collision 
frequency of ions. 
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